2.0 Milestone

1. METHODOLOGY Faculty Reference
2. CRITERIA Student Handout
3. FEEDBACK FORM Sample
4. InDesign TEMPLATE Available Online
2.0 Milestone

MILESTONE METHODOLOGY – Faculty Reference

INTENT:
Effective for the graduating class of 2015 and subsequent classes, Milestone 2.0 is a mandatory review of progress toward the accredited Bachelor of Architecture degree and a graded component of ARC 401. The purpose of this review is to provide an assessment of the skills and knowledge of the Core Stage of the Professional Phase (from 2nd Year through Fall of the 4th Year); as such, it will be a helpful tool in graduating with the requisite abilities of the accredited professional degree and realizing the highest potential of each student. Milestone 2.0 is the gateway to the Application Stage, or the final three semesters of the Professional Phase of the B.Arch.

The medium of evaluation is the Milestone Portfolio, the EVIDENCE of each student’s comprehensive output through the first five semesters of the Professional Phase. It is organized around, and addresses criteria under, the School’s five Curricular Streams: Studio, Technology, Design Communications, History + Theory, and Professional Practice.

Milestone 2.0 asks students to appraise their progress by considering personal strengths and weaknesses, effectively speculating on a career trajectory by illustrating how they have satisfied criteria within each Stream. The essence of Milestone 2.0 is synthesis: students should demonstrate how the Stream criteria have been brought together across courses and studios. The Milestone is therefore, not a re-grading of past coursework; it is the construction of a case, using an assemblage of evidence from past courses and studios, that demonstrates the student’s acquisition of skills and knowledge outlined by the Stream criteria. Occurring when the curriculum transitions from Core to Application Stage, this Milestone is a recognition of preparedness for the complex studies undertaken in the final semesters. The Core Stage, being tested by Milestone 2.0, inculcates basic skills that must be performed by the individual; the Application Stage, tested by the Capstone, teaches students to work in collaboration, to handle more ambiguous criteria, to serve clients and community groups, and to work under conditions analogous to critical practice.

Milestone 2.0 is intended to be supportive of students, encouraging them to assume responsibility for skill and knowledge acquisition (rather than merely passing courses) and getting themselves to degree completion with the best possible skill set; it is not intended to be punitive. Milestone 2.0 presents an opportunity for students to bring focus and development to their work; to construct and own a personal trajectory toward practice. With three semesters remaining after the Milestone, it allows adequate time for focused development of individual strengths while mastering the new skills presented in the Application Stage.

The Milestone Portfolio must be submitted in a template and to specifications provided by the School, which have been designed to provide a basis for a professional portfolio. Portfolios are anonymous and are reviewed, autonomously, by at least one Faculty representative from each curricular Stream.

The review committee has four potential actions for portfolios that do not indicate unequivocal entry into Application Stage:

RE-PRESENTATION If it seems plausible that evident deficiencies were the result of an inadequate Milestone Portfolio, a student may be asked to revise and resubmit it for re-evaluation. (This is not a student right and will only be extended, as a courtesy, where extensive effort was clearly made yet the reviewers have reason to believe that important material or explanation is missing.)

DIRECTED LEARNING If a student’s work in one or more Streams is marginal, that student’s remaining curricular options may be directed by specifying electives, specific ARC 451 studio(s), or other remedies.

CORE SKILL STRENGTHENING If a student’s work in one or more Streams is weak, the student may be allowed to proceed into the Application Stage, but required to repeat a selected course(s)—regardless of whether they have previously received a passing grade(s)—in order to acquire and demonstrate specific Core skills and knowledge.

CORE SKILL FUNDAMENTALS If a student’s work indicates general unpreparedness to transition to Application studies, the student may be required to re-enter the Core curriculum at a specific point and repeat one or more course(s), regardless of whether they have previously received a passing grade(s), for the purpose of acquiring and demonstrating general Core skills and knowledge in a subsequent Milestone 2.0.

METHODOLOGY:
- Each student is to prepare their Portfolio per the 2.0 Milestone Criteria
- Deadline for receipt of portfolios to be announced (generally one week after final studio presentations)
- Under the lead of the Stream chairs, designated Curriculum Stream members will have 48 hours to review each portfolio for Evidence and submit these evaluations to the Admissions Committee Chair
 1. Stream members are to assign an evaluation of each Criteria item as follows on the 2.0 Milestone Feedback Form
 - I for Criteria Incomplete
 - M for Criteria Met
 - M+ for Criteria Met with Distinction
 2. Stream members are to provide written comments for each student relative to the stream Criteria in the column provided
 3. The Design Communications Stream will also score the Portfolios for overall quality
 - The agreed upon, “Best” portfolio, will receive special public recognition
- Following the Stream review, the Milestone Review Committee will convene to assess evaluations and comments, and to determine the Recommendations and Recourse for each student

RECOGNITION AND EXHIBITION
- As selected by the Milestone Review Committee, the top ranked portfolios will receive:
 1. Public recognition and a physical and online exhibition of their work
 2. Priority choice in the selection of their Arc451 studio for Spring 2014
Milestone 2.0

INTENT:
Effective for the graduating class of 2015 and subsequent classes, Milestone 2.0 is a mandatory review of progress toward the accredited Bachelor of Architecture degree and a graded component of ARC 401. The purpose of this review is to provide an assessment of the skills and knowledge of the Core Stage of the Professional Phase (from 2nd Year through Fall of the 4th Year); as such, it will be a helpful tool in graduating with the requisite abilities of the accredited professional degree and realizing the highest potential of each student. Milestone 2.0 is the gateway to the Application Stage, or the final three semesters of the Professional Phase of the B.Arch.

The medium of evaluation is the Portfolio, the EVIDENCE of each student’s comprehensive output through the first five semesters of the Professional Phase. It is organized around, and addresses criteria under, the School’s five Curricular Streams: Studio, Technology, Design Communications, History + Theory, and Professional Practice.

Milestone 2.0 asks students to appraise their progress by considering personal strengths and weaknesses, effectively speculating on a career trajectory by illustrating how they have satisfied criteria within each Stream. The essence of Milestone 2.0 is synthesis: students should demonstrate how the Stream criteria have been brought together across courses and studios. The Milestone is therefore, not a re-grading of past coursework; it is the construction of a case, using an assemblage of evidence from past courses and studios, that demonstrates the student’s acquisition of skills and knowledge outlined by the Stream criteria. Occurring when the curriculum transitions from Core to Application Stage, this Milestone is a recognition of preparedness for the complex studies undertaken in the final semesters. The Core Stage, being tested by Milestone 2.0, inculcates basic skills that must be performed by the individual; the Application Stage, tested by the Capstone, teaches students to work in collaboration, to handle more ambiguous criteria, to serve clients and community groups, and to work under conditions analogous to critical practice.

Milestone 2.0 is intended to be supportive of students, encouraging them to assume responsibility for skill and knowledge acquisition (rather than merely passing courses) and getting themselves to degree completion with the best possible skill set; it is not intended to be punitive. Milestone 2.0 presents an opportunity for students to bring focus and development to their work; to construct and own a personal trajectory toward practice. With three semesters remaining after the Milestone, it allows adequate time for focused development of individual strengths while mastering the new skills presented in the Application Stage.

The Milestone Portfolio must be submitted in a template and to specifications provided by the School, which have been designed to provide a basis for a professional portfolio. Portfolios are anonymous and are reviewed, autonomously, by at least one Faculty representative from each curricular Stream.

The review committee has four potential actions for portfolios that do not indicate unequivocal entry into Application Stage:

- **RE-PRESENTATION**
 - If it seems plausible that evident deficiencies were the result of an inadequate Milestone Portfolio, a student may be asked to revise and resubmit it for re-evaluation. (This is not a student right and will only be extended, as a courtesy, where extensive effort was clearly made yet the reviewers have reason to believe that important material or explanation is missing.)

- **DIRECTED LEARNING**
 - If a student’s work in one or more Streams is marginal, that student’s remaining curricular options may be directed by specifying electives, specific ARC 451 studio(s), or other remedies.

- **CORE SKILL STRENGTHENING**
 - If a student’s work in one or more Streams is weak, the student may be allowed to proceed into the Application Stage, but required to repeat a selected course(s)—regardless of whether they have previously received a passing grade(s)—in order to acquire and demonstrate specific Core skills and knowledge.

- **CORE SKILL FUNDAMENTALS**
 - If a student’s work indicates general unpreparedness to transition to Application studies, the student may be required to re-enter the Core curriculum at a specific point and repeat one or more course(s), regardless of whether they have previously received a passing grade(s), for the purpose of acquiring and demonstrating general Core skills and knowledge in a subsequent Milestone 2.0.

REQUIREMENTS:

- Five (5) projects within the School’s Portfolio Template and one (1) academic paper. Content and layout will be defined by each student, within the options provided by the Template. Content requirements:
 - At least three (3) studio projects;
 - At least one project from 2nd, 3rd and 4th Year studios;
 - Work from Design Communications, Structures, Programming, Materials and Methods, and Construction Documents may be included;
 - The individual’s role in group work must be accurately described and attributed, per the Template; and
 - The academic paper must be in PDF format, as described below.

- Utilizing Template layers, provide EVIDENCE of having fulfilled each criterion, in each curricular Stream, via graphic and text annotation. Stream-specific annotations will be entered on their respective layers. Stream criteria are listed below.

- The academic paper may be from any college-level course and must illustrate competence in written communication, logical reasoning, and research ability, as well as the proper use of academic writing standards with citations that follow the author/date system of the Chicago Manual of Style. (If the paper in question was submitted following other conventions, such as MLA, they should be reconfigured to the author/date system of the Chicago Manual of Style (http://www.chicagomanualofstyle.org/tools_citationguide.html).

- Where indicated in the template, provide a 300-500 word Statement of design philosophy. This Statement should identify works and designers from whom the student takes inspiration (or reaction); it may also describe the relevance of the chosen projects to the Stream criteria. Statements must illustrate the academic writing standards defined above.
Milestone 2.0

FORMAT
- Use of the School’s Portfolio Template is required:
 - 11x17, horizontal portfolio, with facing-pages, and no limit to the number of pages.
 - Content must fit within the specified 8 ½ x 11” regions of the Template, with the remaining zones for annotations. The table of contents must be complete and accurate.
- Submit the Portfolio in PDF format to D2L. Maximum file size 60 mb.
- To assure anonymity, each student will be assigned an identification number to be inserted on the A-Master page of the Template. Do not include identifying information in the submission and redact all such information from the presented work.
- Group projects, or portions thereof, must be identified by annotation with clear descriptions of the scope and nature of the submitting individual’s contributions.
- Due on 5pm of specified date – a late penalty of one letter grade per each 24 hour period following the deadline and relinquishing expectations of moving immediately into the Application phase of the curriculum.

EVALUATION
The portfolios will be evaluated against the Stream criteria, as well as for overall quality, by a Faculty committee. Feedback, recommendations, and recourse will be provided in writing within 5 days of submission.

It is an act of plagiarism and a violation of the Code of Academic Integrity to submit someone else’s work or ideas as part of your portfolio. Students found guilty of submitting someone else’s work, or representing someone else’s ideas, will be expelled. Students are required to sign the statement on the back of the application certifying that they have authored the work in the portfolio.
<table>
<thead>
<tr>
<th>Studio</th>
<th>Criteria / Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SYNTHETIC DESIGN: The ability to synthesize the particular requirements of a project along with the other Stream objectives.</td>
<td></td>
</tr>
<tr>
<td>• ITERATIVE DESIGN: The ability to design a comprehensive project by incremental and repetitive postulation, testing, and correction.</td>
<td></td>
</tr>
<tr>
<td>• ORDERING + ORGANIZATION: The ability to design with formal, material, spatial, compositional, and processional systems; the use of organizational principles and the development of a design according to ordering systems.</td>
<td></td>
</tr>
<tr>
<td>• CONTEXTUAL DESIGN: The ability to design in response to the natural and built environments; the commitment to make a site better than one found it, the understanding that no project exists in isolation, and the ability to within work with contexts at varying scales.</td>
<td></td>
</tr>
<tr>
<td>• COMPONENT DESIGN: The ability to design part-to-whole relationships; the design of building elements (envelope, structure, space, material pallet, etc.) with appropriate modularity, proportion, solid-to-void, opaque-to-transparent, and other rubrics that create relationship across scales.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Structures</th>
<th>Environmental Control Systems (ECS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• STRUCTURAL LOGIC: The ability to conceive, apply, and develop structural systems appropriate to use and context, including bay size, span direction, member hierarchy, and connection type; comprehensive transfer of loads from their point of origin to and into the ground.</td>
<td>PASSIVE SYSTEMS: The ability to appropriately site, orient, mass, and deploy passive strategies for heating and cooling, ventilation, and daylighting in response to climate and use; priority given to Passive over Active systems.</td>
</tr>
<tr>
<td>• STRUCTURAL SYSTEMS: The ability to select and deploy appropriate structural systems relative to use, span, and vertical and lateral forces; includes appropriate member sizing / spacing, connections, and response to special conditions (e.g., retaining walls, stair openings, and topography).</td>
<td>ACTIVE SYSTEMS: The ability to select, describe, layout, and integrate systems for HVAC, plumbing, electrical, lighting, fire protection, security, and vertical transportation; priority given to sustainable systems and practices.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Communications</th>
<th>Materials and Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DESIGN LOGIC: The ability to communicate design logic orally and through progressions of diagrams, conceptual models, charts, images, and other graphic devices.</td>
<td>• MATERIALITY: The ability to select and appropriately deploy building materials with appreciation for their inherent properties, dimensional limits, and modularity relative to site and use.</td>
</tr>
<tr>
<td>• DIGITAL PRODUCTION: The ability to select and deploy appropriate digital technology in design, production, and presentation.</td>
<td>• ENVELOPE: The ability to select and deploy building envelope systems, detailing them to address fundamental environmental factors (e.g., temperature, moisture, and air infiltration) in response to climate and orientation.</td>
</tr>
<tr>
<td>• CONVENTIONS: The ability to effectively document design work using professional conventions (e.g., lineweights, cross-reference systems, drawing and modeling conventions).</td>
<td>• 3D-DRAWING: Evidence of systems integration and systems components via 3d modeling, and the subsequent generation of orthographic drawings from this 3d database.</td>
</tr>
<tr>
<td>• 3D-DRAWING: Evidence of systems integration and systems components via 3d modeling, and the subsequent generation of orthographic drawings from this 3d database.</td>
<td>• PHYSICAL MODELING: The ability to craft physical models of concepts, sites, buildings, and building components (both by hand and with digital tools), in such a way that advances the design process and represents architectural intentions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History and Theory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• TRADITIONS: The understanding of global traditions in the built environment, from prehistoric to contemporary times, particularly their relevance to cultural shifts, socio-political developments, construction innovations, emerging design conceptions, and developments in professional practice.</td>
<td>• RESEARCH: The ability to conduct scholarly research, selecting appropriate and/or historically significant source material and deriving from it relevant information; the ability to properly use, cite, and format scholarly information.</td>
</tr>
<tr>
<td>• RESEARCH: The ability to conduct scholarly research, selecting appropriate and/or historically significant source material and deriving from it relevant information; the ability to properly use, cite, and format scholarly information.</td>
<td>• ANALYSIS: The understanding of disciplinary traditions and the ability to select appropriate precedents and deploy them to inform design (regarding form, functional and structural ordering, program, and context).</td>
</tr>
<tr>
<td>• ANALYSIS: The understanding of disciplinary traditions and the ability to select appropriate precedents and deploy them to inform design (regarding form, functional and structural ordering, program, and context).</td>
<td>• WRITING: The ability to clearly and logically express research, analysis, and design intentions in writing, using appropriate academic and professional standards of grammar and formatting.</td>
</tr>
<tr>
<td>• WRITING: The ability to clearly and logically express research, analysis, and design intentions in writing, using appropriate academic and professional standards of grammar and formatting.</td>
<td>• THEORY: The understanding of theoretical traditions in architecture as evidenced in contemporary practices; the understanding of theory's relevance to design.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professional Practice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• PROGRAMMING: The ability to identify project goals and objectives, determine qualitative and quantitative project needs (e.g., programmatic elements, space criteria, and area requirements), analyze such data (using conventions such as "part-to-whole" ratios and net-to-gross comparisons), and creatively interrogate project requirements to identify design potential.</td>
<td>• SITE DESIGN: The ability to collect, analyze, and synthesize natural and human-made site data with regards to orientation, climate, topography, zoning, and infrastructure; the appropriate use and response to setting in design.</td>
</tr>
<tr>
<td>• SITE DESIGN: The ability to collect, analyze, and synthesize natural and human-made site data with regards to orientation, climate, topography, zoning, and infrastructure; the appropriate use and response to setting in design.</td>
<td>• CONSTRUCTION DOCUMENTATION: The ability to document the selection and assembly of project components in a Building Information Model; the output of construction documents using professional conventions (including dimensioning, annotation, systems integration, and outline specifications).</td>
</tr>
</tbody>
</table>
CRITERIA / Learning Objectives

Studio
- **SYNTHETIC DESIGN**: The ability to synthesize the particular requirements of a project along with the other Stream objectives.
- **ITERATIVE DESIGN**: The ability to design a comprehensive project by incremental and repetitive postulation, testing, and correction.
- **ORDERING + ORGANIZATION**: The ability to design with formal, material, spatial, compositional, and processional systems; the use of organizational principles and the development of a design according to ordering systems.
- **CONTEXTUAL DESIGN**: The ability to design in response to the natural and built environment; the commitment to make a site better than one found it, the understanding that no project exists in isolation, and the ability to within work with contexts at varying scales.
- **COMPONENT DESIGN**: The ability to design part-to-whole relationships; the design of building elements (envelope, structure, space, material pallet, etc.) with appropriate modularity, proportion, solid-to-void, opaque-to-transparent; and other rubrics that create relationship across scales.

Technology

- **Structures**
 - **STRUCTURAL LOGIC**: The ability to conceive, apply, and develop structural systems appropriate to use and context, including load, span direction, member hierarchy, and connection type; comprehensive transfer of loads from their point of origin to and into the ground.
 - **STRUCTURAL SYSTEMS**: The ability to select and deploy appropriate structural systems relative to use, span, and vertical and lateral forces; includes appropriate member sizing / spacing, connections, and response to special conditions (e.g., retaining walls, stair openings, and topography).
 - **PASSIVE SYSTEMS**: The ability to appropriately site, orient, mass, and deploy passive strategies for heating and cooling, ventilation, and daylighting in response to climate and use; priority given to Passive over Active systems.
 - **ACTIVE SYSTEMS**: The ability to select, describe, layout, and integrate systems for HVAC, plumbing, electrical, lighting, fire protection, security, and vertical transportation; priority given to sustainable systems and practices.

- **MATTERIALITY**: The ability to select and appropriately deploy building materials with appreciation for their inherent properties, dimensional limits, and modularity relative to site and use.

Design Communications

- **DESIGN LOGIC**: The ability to communicate design logic orally and through progression of diagrams, conceptual models, charts, images, and other graphic devices.
- **DIGITAL PRODUCTION**: The ability to select and deploy appropriate digital technology in design, production, and presentation.
- **CONVENTIONS**: The ability to effectively document design work using professional conventions (e.g., lineweights, cross-reference systems, drawing and modeling conventions).
- **3D-DRAWING**: Evidence of systems integration and systems components via 3D modeling, and the subsequent generation of orthographic drawings from this 3D database.
- **PHYSICAL MODELING**: The ability to craft physical models of concepts, sites, buildings, and building components (both by hand and with digital tools) in such a way that advances the design process and represents architectural intentions.

History and Theory

- **TRADITIONS**: The understanding of global traditions in the built environment, from prehistoric to contemporary times, particularly their relevance to cultural shifts, socio-political developments, construction innovations, emerging design concepts, and developments in professional practice.
- **RESEARCH**: The ability to conduct scholarly research, selecting appropriate and/or historically significant source material and deriving from it relevant information; the ability to properly use, cite, and format scholarly information.
- **ANALYSIS**: The understanding of disciplinary traditions and the ability to select appropriate precedents and deploy them to inform design (regarding form, functional and structural ordering, program, and context).
- **WRITING**: The ability to clearly and logically express research, analyses, and design intentions in writing, using appropriate academic and professional standards of grammar and formatting.
- **THEORY**: The understanding of theoretical traditions in architecture as evidenced in contemporary practice; the understanding of theory’s relevance to design.

Professional Practice

- **PROGRAMMING**: The ability to identify project goals and objectives, determine qualitative and quantitative project needs (e.g., programmatic elements, space criteria, and area requirements), analyze such data (using conventions such as “part-to-whole” ratios and net-to-gross comparisons), and creatively interrogate project requirements to identify design potential.
- **SITE DESIGN**: The ability to collect, analyze, and synthesize natural and human-made site data with regards to orientation, climate, topography, zoning, and infrastructure; the appropriate use and response to setting in design.
- **CONSTRUCTION DOCUMENTATION**: The ability to document the selection and assembly of project components in a Building Information Model; the output of construction documents using professional conventions (including dimensioning, annotation, systems integration, and other specifications).
- **PORTFOLIO DESIGN**: Evidence of overall portfolio design excellence in content and composition.
Narrative

Vid qui di veni omnis quidit laccupariti sum apitatem veligni dolorit qui commolorrume com-mos quat voluptatquia niam con nus velluptate perrunt, quam aut litis endigendest, odis dolum volorrunt, senis nitatium que qui desti andam exeria perferi onseque pa nonseri aerum, EDIT omnmodap sapeorrorre volled ebisit quo coremolv creped quam, el maiores alcid ute a commihit-tat aces nism aliquis autatis nis quowdi ommoloruptam faccull uptatem esrooipri adis cumcu-quaes con entorrerumque ad quam cum ad ulliputa pro mosismenia que aut maior reribus dem rerit et volore nescius sitit labor sito. Sit rerem aut as eossanf. Occell tissus, alt eost cum id mi, consequo melum tempus dolupitus, et lab ium fugit, occaecum ius audae. Editt occul-parum quia si omnissequiam quia blandignam, imil ipsam faccuss, sa di beror re platur? Imeniiii liaccatu? Evender fersped ipsapelitium faccuss qui quas dioressequid ex et rem harchilt et explitatis ees-cabre rehenim et molorios is simpelae omnis etur audam velicim illectem fug. Xeriam volores imosanda nis aliaia temquaes ero et quaturit, autem ex et hiliquat omnis vidi qui con pro con-seque nus et int rem nam fuga. Ut quatur soloreperum la aditio quo commihil etus ressum si aut quatesed eatus volorieria veliatrur, sequis ant ad et erum accus dolupatatum quam fugiatemod magnim cort, unt ma audis nonsequ isciurium, occus que quos et volorempel ipsus, ut ero inte dolorel elibus vit et reerectore adiadam laccatemquio dem nosseribus quia nihito nsecaib iur suniti rerovid maiosa voluptati solore sam volupatuer? Que prem ad qui volupta cullupatii vo-luptus quiaspe perum reperitos apicia sita vero bereperum esed eum vollabore nulpari berepre maxima nullenest facea corri quiducim nonsequo mollaboriaim, etuscid quasimolupliquit quiate volutes entiori asitnpillam nonsequi cortincto endistrum accus et la dolupat faccuss volupatii is atium quibusdaee. Rem remporendae. Itatet perum as dosslii tassit unitibus esto cum fugiaerita nus exerferum fugiatem. Nam, omnisquart, si vestesi ommu volore rem que laboriaest, con-seu aestatur; que peria ius sunt pa dis explibis ex et eaqutiat aut harum lam vent dolesed quodiasitas in enienet mint as rerrum, que quont fugit mediatquia asperibustem repro optaep aepelia sum fugiatium tiuam que voloribus soloreperum fugit magni audic tecto que voloribus se cor simust vento optionsandis corunt pre eossunt enimt iata diatia es rerumquam quos do-lupti aut et facea volorit ataeisti stionsensi que niantid atusdaectis pelentis sam experro et eicsid quia doluptam soluppta aut eesquis non rempos id mos asperrovidit incendt itaquam reperchilis dolore aliqoud iuctum, ulparias act am et illorum iur, omni berro bea id que is adipid unto tes et mil mod millacae aditate il modit qui quir iexplacatelli vella cum rendae platis petit apis-eaque corerium fug. Ut ma que mo isciipsum ut quid qui aprermopores aut inctorum illioratatem ant dicdel liquid nonsp molupla tlunturt? Lit esto culpa acium ipsanda ipsicii occuptatatem es

Milestone 2.0 Portfolio

01 Project Title
Arc000_20XX

02 Project Title
Arc000_20XX

03 Project Title
Arc000_20XX

04 Project Title
Arc000_20XX

05 Project Title
Arc000_20XX
Evidence of Architectural Synthesis, Ut quam solut aperro et omnis et dolorenisi accum rero qui doluptiae quo in nimint qui blant lab imaximin porerib erup

Evidence of Structural Organization, Ut quam solut aperro et omnis et dolorenisi accum rero qui doluptiae quo in nimint qui blant lab imaximin porerib erup

Evidence of Historical Analysis, Ut quam solut aperro et omnis et dolorenisi accum rero qui doluptiae quo in nimint qui blant lab imaximin porerib erup

Evidence of Diagramming, Ut quam solut aperro et omnis et dolorenisi accum rero qui doluptiae quo in nimint qui blant lab imaximin porerib erup

Evidence of Project Goals, Ut quam solut aperro et omnis et dolorenisi accum rero qui doluptiae quo in nimint qui blant lab imaximin porerib erup